- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Gjerloev, Jesper_W (2)
-
Liang, Jun (2)
-
Lyons, Larry_L (2)
-
Waters, Colin_L (2)
-
Zou, Ying (2)
-
Anderson, Brian_J (1)
-
Bhatt, Asti (1)
-
Chartier, Alex (1)
-
Chen, Li‐Jen (1)
-
Ferdousi, Banafsheh (1)
-
Friel, Matt (1)
-
Liu, Jiang (1)
-
Ohtani, Shin (1)
-
Shen, Yangyang (1)
-
Shin, Ohtani (1)
-
Vines, Sarah (1)
-
Wang, Chih‐Ping (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Enhancement of currents in Earth's ionosphere adversely impacts systems and technologies, and one example of extreme enhancement is supersubstorms. Despite the name, whether a supersubstorm is a substorm remains an open question, because studies suggest that unlike substorms, supersubstorms sometimes affect all local times including the dayside. The spectacular May 2024 storm contains signatures of two supersubstorms that occurred successively in time with similar magnitude and duration, and we explore the nature of them by examining the morphology of the auroral electrojet, the corresponding disturbances in the magnetosphere, and the solar wind driving conditions. The results show that the two events exhibit distinctly different features. The first event was characterized by a locally intensified electrojet followed by a rapid expansion in latitude and local time. Auroral observations showed poleward expansion of auroras (or aurorae), and geosynchronous observations showed thickening of the plasma sheet, magnetic field dipolarization, and energetic particle injections. The second event was characterized by an instantaneous intensification of the electrojet over broad latitude and local time. Auroras did not expand but brightened simultaneously across the sky. Radar and LEO observations showed enhancement of the ionospheric electric field. Therefore, the first event is a substorm, whereas the second event is enhancement of general magnetospheric convection driven by a solar wind pressure increase. These results illustrate that the so‐called supersubstorms have more than one type of driver, and that internal instability in the magnetotail and external driving of the solar wind are equally important in driving extreme auroral electrojet activity.more » « less
-
Zou, Ying; Gjerloev, Jesper_W; Ohtani, Shin; Friel, Matt; Liang, Jun; Lyons, Larry_L; Shen, Yangyang; Liu, Jiang; Chen, Li‐Jen; Ferdousi, Banafsheh; et al (, AGU Advances)Abstract Abrupt variations of auroral electrojets can induce geomagnetically induced currents, and the ability to model and forecast them is a pressing goal of space weather research. We report an auroral electrojet spike event that is extreme in magnitude, explosive in nature, and global in spatial extent that occurred on 24 April 2023. The event serves as a fundamental test of our understanding of the response of the geospace system to solar wind dynamics. Our results illustrate new and important characteristics that are drastically different from existing knowledge. Most important findings include (a) the event was only of ∼5‐min duration and was limited to a narrow (2°–3°) band of diffuse aurora; (b) the longitudinal span covered the entire nightside sector, possibly extending to the dayside; (c) the trigger seems to be a transient solar wind dynamic pressure pulse. In comparison, substorms usually last 1–2 hr and span almost the entire latitudinal width of the auroral oval. Magnetic perturbation events (MPEs) span hundreds km in radius. Both substorms and MPEs are mainly driven by disturbances in the magnetotail. A possible explanation is that the pressure pulse compresses the magnetosphere and enhances diffuse precipitation of electrons and protons from the inner plasma sheet, which elevates the ionospheric conductivity and intensifies the auroral electrojet. Therefore, the event exhibits a potentially new type of geomagnetic disturbance and highlights a solar wind driver that is enormously influential in driving extreme space weather events.more » « less
An official website of the United States government
